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Previous experiments based on the 11–20 game have produced evidence for the level-k model with
observed levels of strategic thinking consistently ranging from 0 to 3. Our baseline treatment uses the
11–20 game and replicates previous results. We apply four models of strategic thinking to the
baseline-treatment data and use these to predict behaviour and beliefs in five other treatments that
employ games with a very similar structure. The best predictive performance is achieved by models
that incorporate ‘common knowledge of noise’. A model of noisy introspection, which does so,
predicts behaviour remarkably well.

Behaviour in one-shot games often differs substantially from Nash equilibrium
predictions (Goeree and Holt, 2001), which has led to the development of alternative
models. These alternatives relax either the assumption of correct beliefs or the
assumption of perfectly maximising behaviour. The leading candidate in the latter
category is McKelvey and Palfrey’s (1995) quantal response equilibrium (QRE), which
subsumes that decision-making is noisy but that beliefs are correct on average. An
important strength of QRE is that it is ‘context-free’, i.e. it can be applied uniformly to
data sets from different experiments without having to be adapted to the specifics of
the experimental context. In repeated-game experiments where behaviour has a
chance to converge, QRE typically does a good job at predicting final-period averages
as well as comparative statics across treatments. For one-shot games, however, the
assumption that beliefs are correct on average is generally not realistic. Moreover, the
basic QRE model corresponds to a symmetric Bayes–Nash equilibrium that predicts
homogenous behaviour.

Observed behaviour, in contrast, typically appears quite heterogenous. This has
stirred interest in theories that allow for different levels of strategic sophistication, or
different levels of thinking. In this category, the leading candidate is the level-k model
(Stahl and Wilson, 1994, 1995; Nagel, 1995), which employs a potentially infinite
hierarchy of strategic thinking: level-0 chooses naively or randomly, level-1 best
responds to level-0, level-2 best responds to level-1, etc. Given that the behaviour of
higher levels is fixed by that of level-0, the specification of level-0 behaviour is crucially
important. Initially, level-0 behaviour was simply modelled to be uniform, resulting in a
context-free model that can be generally applied. Recently, more elaborate specifica-
tions of level-0 behaviour that take into account details of the environment have been
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proposed in order to improve fit. Without generally applicable rules for how to map
certain game (or other) variables into level-0 behaviour, however, this approach has
the flavour of ‘doing theory with a dummy variable’.

Unless, of course, the environment dictates an obvious and unique choice for the
non-strategic level-0. Arad and Rubinstein (2012) propose such an environment: the
11–20 game where two players can ask for any integer amount between (and
including) 11 and 20 and receive what they ask for. This is the non-strategic part of
the game and since even a level-0 understands that ‘more is better’, the obvious
choice for level-0 is to ask for 20. The strategic part of the game specifies that an
additional bonus of 20 is rewarded to a player whose ask amount is 1 less than that of
the other player. A level-1 player would therefore ask for 19, level-2 for 18 etc. In
three variations of the 11–20 game, Arad and Rubinstein (2012) find that the
inferred levels of thinking consistently range from 0 to 3. Arad and Rubinstein (2012)
thus accomplish two important goals:

(i) they design a game for which level-k type thinking is natural and for which the
level-0 choice is obvious; and

(ii) they report data that support the level-k model and corroborate results from
previous experiments.

That is not to say that their data are inconsistent with alternative models such as
QRE. Given observed choice frequencies in Arad and Rubinstein’s (2012) exper-
iment, requesting amounts of 17, 18 or 19 (attributed to levels 3, 2 and 1
respectively) all yield expected payoffs above 20 and QRE thus also predicts these
numbers are likely to be chosen.1 To separate the different models better, we
consider variations of the 11–20 game that leave intact the obvious level-0 choice
and the best-response structure of the game but that change the payoffs associated
with different levels of thinking. We do this by assigning the numbers 11 to 20 to
ten boxes arranged on a line, always reserving the rightmost box for 20. Subjects
receive the number in the box they choose plus a reward if their chosen box is
immediately to the left of that chosen by the other subject. The standard 11–20
game corresponds to arranging numbers in increasing order (from left to right) but
in other variations the sequence is not monotone. For example, in an ‘extreme’
variation, numbers decline from 19 to 11 ending, as usual, with 20. This reshuffling
of numbers does not affect the logic underlying the level-k model: level-0 chooses
the rightmost box with 20, level-1 the box next to it, level-2 the box next to that etc.
In other words, the level-k model predicts behaviour in these variations to be
identical to that in the standard game.

Observed behaviour in these variations differs markedly from level-k predictions,
however. Subjects submit a high request, say 19, irrespective of whether this
corresponds to a level-1 choice in the standard game or to a level-9 choice in the
extreme variation. While not predicted by the level-k model, a choice of 19 is actually
quite intuitive in that it costs only 1 and potentially rewards 20. When others’
behaviour is noisy and dispersed, all requests have some chance of yielding the bonus

1 In Arad and Rubinstein’s (2012) experiment the choice frequencies for amounts of 20, 19, 18 and 17 are
6%, 12%, 30% and 32% resulting in expected payoffs of 20, 20.2, 20.4 and 23 respectively.

© 2017 Royal Economic Society.

2 T H E E CONOM I C J O U RN A L



and those for which the loss in requested amount is low will naturally be explored.
Importantly, this argument requires ‘common knowledge of noise’, i.e. not only is
behaviour noisy but subjects expect it to be noisy and act accordingly. This common
knowledge of noise results in drastically different predictions than simply adding noise
to the level-k model, which is the standard practice when fitting this model to the data.
The latter would disperse observed levels in the baseline game but cannot explain why
a substantial fraction of the subjects acts as if they are of level 9 in the extreme variation
of the game.

The noisy introspection (NI) model introduced by Goeree and Holt (2004) naturally
captures the notion of common knowledge of noise. Players are not only noisy
themselves but expect others to be noisy. In the 11–20 game this means that choices
such as 18 and 19 in the extreme game become sensible. We adapt the more general
model here to allow for heterogeneity in levels of thinking in a way similar to the level-k
model but replace strict best responses with noisy best responses. In other words, level-
1 makes a noisy best response to level-0, level-2 makes a noisy best response to the noisy
play of level-1, etc.

We put the NI model to the test as follows. We first replicate Arad and Rubinstein’s
(2012) baseline treatment and use this to identify the distribution of noisy level-k
thinkers, for k = 0, 1, 2, . . . , as well as a common noise parameter. These are then
used to out-of-sample predict behaviour and beliefs in five variations of the 11–20
game. As detailed below, the NI model predicts choices and beliefs strikingly well
across all game variations.

This article is organised as follows. The next Section explains the noisy introspection
model. Section 2 details the experimental design and Section 3 discusses the
experimental results. Section 4 concludes. Additional estimation results and the
experimental instructions can be found in the online Appendices.

1. Noisy Introspection

In the NI model, players apply a process of iterated reasoning about what the other will
choose, what the other thinks the player will choose, what the other thinks the player
thinks the other will choose etc. It is natural to assume that this thought process
becomes increasingly complex with every additional iteration which can be neatly
captured by considering a sequence of noisy responses with non-decreasing noise
parameters. Imagine a game of chess where a player tries to think through a series of
moves. He needs to envision the board’s configuration after each such move, after each
response by the opponent to his move etc. It is intuitive to think that it becomes
increasingly hard to think about board configurations and possible moves the further
ahead these lie in the game.

To formalise, consider a two-player, symmetric game with a finite set of actions, A.2

The expected payoff peða; qÞ of choosing a 2 A depends on a player’s beliefs, q, which
is a probability distribution over A. Adopting the familiar logit formulation we can
define the ‘better response’ mapping /l : ½0; 1�jAj ! ½0; 1�jAj with components:

2 Symmetry allows us to avoid player specific subscripts.
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/a
lðqÞ ¼

exp½peða; qÞ=l�P
a02A exp½peða0; qÞ=l�

; 8a 2 A: (1)

The noise parameter, l, determines how sensitive the response function is with respect
to expected payoffs: l = 0 results in a best response and l = 1 in uniform
randomisation.

The unique NI prediction, /, can be defined as the limit sequence:

/ ¼ lim
n!1/l0

� /l1
� . . . � /ln

ðqÞ; (2)

where l0 � l1 � . . . � l1 ¼ 1. This guarantees that / is independent of the belief q
used as a starting point for the iterated thought process. In other words, assuming that
the sequence of error rates diverges to infinity implies that players ‘start out’ their
reasoning process from a uniform prior.

Besides the monotonicity and limit conditions, the NI model imposes no further
restrictions on the sequence of noise parameters thereby allowing for various special
cases to be included. Goeree and Holt (2004), for instance, consider a homogeneous
NI model where all players are characterised by the same geometrically increasing
sequence of noise parameters. Here we use a different specification to allow for
heterogeneity. A parsimonious model that exhibits heterogeneity follows by consid-
ering different levels of noisy thinking, NI-k for k = 0, 1, 2, . . . , where the sequence of
noise parameters for NI-k is given by:

lk̂ ¼ l k̂\k
1 k̂� k

�
: (3)

The corresponding noisy introspection prediction for each level is then:

/k ¼ /l � /l � . . . � /l

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{k�1 times

�/1
¼ /lð/k�1Þ:

(4)

So level-0 randomises uniformly across all actions, level-1 makes a noisy best response
to uniform beliefs, level-2 makes a noisy best response to a noisy best response to
uniform beliefs etc. Introducing heterogeneity into the model facilitates comparison to
the level-k model and will allow us to pin-down differences in performance to the most
salient difference of the model, namely the ‘common knowledge of noise’ aspect.
Figure 1 illustrates the noise sequences of the various levels.

An appealing feature of the NI model presented in (3) is that it includes other
popular models as special cases. For instance, when l = 0 the noisy introspection
model reduces to the level-k model that employs strict best responses.3 As another
example, suppose all players have infinite levels of noisy thinking so that the sequence

3 One potential difference is that level-0 corresponds to random behaviour in the noisy introspection
model but not necessarily in the level-k model. Recent versions have allowed the definition of level-0 to
depend on the specifics of the game. For example, for the 11–20 game, Arad and Rubinstein (2012) argue
that level-0 play is more adequately described by a choice of 20. When we apply level-k to the data, we consider
both the possibility that level-0 chooses 20 and that level-0 chooses randomly.
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of noise parameters is constant at l. Then (2) converges to a quantal response
equilibrium, if it converges at all, as the limit sequence satisfies /lð/Þ ¼ /. This limit is
illustrated by the horizontal line in Figure 1. Finally, in those cases where (2) converges
with constant noise parameters even when l = 0, the outcome converges to a Nash
equilibrium. So all the familiar models, level-k, QRE and Nash, are potentially nested.4

Another interesting connection is between noisy introspection and the concept of
rationalisability (Bernheim, 1984; Pearce, 1984). The latter is based on the idea of
iteratively eliminating strategies that arenever a best response for any set of beliefs. Starting
from this and replacing rational best responses with logit best responses, one gets back to
noisy introspection. An important difference between the two is that while the set of
rationalisable strategies generally consists ofmore than one point, the ‘noisy rationalisable
strategy’ is always unique. This is true even in games with multiple Nash equilibria.

2. Experimental Design

The experiment used variations of Arad and Rubinstein’s (2012) money request
game, which were described as follows:5

Noise

µ

0 1 2 3
Level

QRE

NI-3NI-2NI-1NI-0

∞

∞∞∞∞

Fig. 1. Various Levels of Noisy Thinking in the NI-k Model
Notes. Each line corresponds to a different sequence of error parameters l0 � l1 � . . . �
l1 ¼ 1: For example, the line labelled NI-0 corresponds to completely random decision-
making, which occurs if l0 ¼ 1. The next level NI-1 reflects a noisy best response to uniform
beliefs, which occurs if l0 ¼ l and l1 ¼ 1. Similarly, NI-k for higher k simply corresponds
to the case l0 ¼ l1 ¼ . . . ¼ lk�1 ¼ l and lk ¼ 1. Colour figure can be viewed at
wileyonlinelibrary.com.

4 Notice that the term ‘nested’ here is not meant in the strict econometric sense. In fact, the specifications
of the various models we estimate in the article are non-nested, so that no a priori ranking in terms of fitness is
possible.

5 The complete set of instructions can be found in online Appendix C. Instructions were read aloud to
establish common knowledge.
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You and another participant in the experiment are randomly matched to play
the following game. On your screen, you see 10 boxes in line, containing
different amounts. Each player requests an amount of points by selecting one
of the 10 boxes. Each participant will receive the amount in the box he/she
selected. A participant will receive an additional amount of R points if the
selected amount is exactly ‘one to the left’ of the amount that the other
participant chooses. Which box do you select?

Subjects were in one of two treatments. In the 11–20 treatment the amounts in the
boxes ranged from 11 to 20 experimental points and the bonus was R = 20 points. In
the 1–10 treatment the amounts ranged from 1 to 10 points and the bonus was R = 8
points. The exchange rate from experimental points to Swiss Francs was adjusted
accordingly so that a choice of the highest number in the rightmost box would equal 5
Swiss Francs in either treatment.

Within a treatment there were three stages. Subjects were given separate instructions
at the start of each stage and received no feedback about their payoffs until the end of
the experiment. In stage 1, subjects played three versions of the game against a random
opponent. Each game has a different arrangement of the amounts in the boxes, see
Figure 2, with the highest amount always located on the far right. In the baseline
version, the numbers are arranged in increasing order from left to right. In the

20191817161514131211B

Treatment 11–20

20151617181911121314M

20111213141516171819E

10987654321B

Treatment 1–10

10567891234M

10123456789E

Fig. 2. Experimental Treatments
Notes. In one treatment, subjects played the three versions of the 11–20 game shown in the top
panel. The baseline (B) version corresponds to Arad and Rubinstein’s (2012) basic version while
the moderate (M) and extreme (E) games reorder the positions of the 10 numbers and place 19
in the middle and in leftmost node respectively. The other treatment consists of three parallel
versions of the 1–10 game where the request amounts range from 1 to 10 and the bonus is R = 8.
Colour figure can be viewed at wileyonlinelibrary.com.
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extreme (E) version the numbers are arranged in decreasing order except that the
rightmost box again contains the highest number. Finally, in the moderate (M)
version, the second to highest amount is put in the middle. To control for order
effects, subjects were randomly assigned (in equal proportions) to one of six possible
orderings of the three game variations. In stage 2, subjects played the games in the
same order as they had in stage 1 but now a subject’s payoff was equal to the average
payoff resulting from all possible matches (each session had 24 subjects so there were
23 possible matches). Stage 3 also used population payoffs but now play was preceded
by a belief-elicitation stage: subjects were asked to guess how many of the other 23
participants would choose each of the amounts. Subjects were rewarded for their
guesses, using a quadratic scoring rule. Table 1 provides a summary of the
experimental design, which has both between-subjects (11–20 or 1–10 game) and
within-subjects elements (three variations of the game played with standard payoffs,
population payoffs, and population payoffs plus belief elicitation).

To determine subjects’ earnings from the experiment, one gamewas randomly chosen
from each stage and subjects received their payoff in that game, plus the payoff from the
belief elicitation process corresponding to the game picked from stage 3 and a show-up
fee of 10 Swiss Francs. This resulted in average earnings of 28.91 Swiss Francs.

A total of 144 subjects participated in six experimental sessions, 24 in each. We
conducted three sessions for both treatments. Subjects were recruited among
undergraduate students at ETH Zurich and the University of Zurich using ORSEE
(Greiner, 2015). The experiment was conducted in the Experimental Economics
Laboratory of the University of Zurich, using z-Tree (Fischbacher, 2007).

3. Experimental Results

The top panel of Figure 3 shows the distribution of choices made by the 72 subjects in
the three variations of the 11–20 game, and the top panel of Figure 4 shows choices for
the other 72 subjects in three parallel variations of the 1–10 game.6 For each game, we

Table 1

Experimental Design

Between-subject design

Treatment 11–20 (n = 72) or Treatment 1–10 (n = 72)

Stage Games Payoff structure Belief elicitation

Within-subject
design

1 B + M + E Payoff against one random opponent No
2 B + M + E Average payoff against all 23 opponents No
3 B + M + E Average payoff against all 23 opponents Yes

6 Comparing treatments 11–20 and 1–10, the distributions are significantly different according to a chi-
square test (p < 0.05 for each game), which is mainly driven by the higher percentage of level-0 and level-1
choices in 1–10. The percentage of level-0 choices increases from 18% to 36% in game M and from 27% to
46% in game E. The difference is significant for both games (p < 0.05, proportion test). In game B, the
biggest difference is in the level-1 choices (23–35%, p < 0.05) whereas level-0 choices are almost the same
(11% in 1–10 and 10% in 11–20). All p-values reported in this article are two-sided, unless otherwise stated.
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pool the choices from the three different stages of the experiment.7 The baseline game
of the 11–20 treatment replicates Arad and Rubinstein’s (2012) main findings: 10% of
the choices correspond to level zero, 77% of the choices correspond to levels 1–3, and
only 13% of the choices reflect a level higher than three. These percentages are not
different at the 5% level from those reported by Arad and Rubinstein (2012): 6% level
zero, 74% levels 1–3, and 20% levels higher than three.8

In the third part of the experiment, subjects reported their beliefs by indicating how
many of the other subjects they believed would choose each box. The top panel of
Figure 6 shows the aggregate distribution of reported beliefs made by the 72 subjects in
the three variations of the 11–20 game, and the same is shown for the subjects that
played the 1–10 game in the top panel of Figure 7. The aggregate data on beliefs does
not show whether individual beliefs are point-estimates or if they expect there to be
noise in others’ choices. Reporting a single non-zero box would reflect single-point
beliefs. The more non-zero boxes reported, the noisier a subject’s beliefs. Table 2
summarises this information for the two treatments. As can be seen in the Table, the vast
majority of reported beliefs have a support spread over three and seven choices. Based
on this, we find that our data exhibits evidence of a ‘common knowledge of noise’.

In what follows, we study how well our experimental results are captured by the four
models of Section 2: Nash, QRE, Level-k and NI.9 First, we apply standard maximum-

Table 2

Individual Beliefs in Terms of Non-zero Boxes Reported

Treatment 11–20 Treatment 1–10

Non-zero boxes Freq Percent Non-zero boxes Freq Percent

10 6 3 10 4 2
9 7 3 9 2 1
8 10 5 8 10 5
7 37 17 7 14 6
6 30 14 6 23 11
5 40 19 5 51 24
4 48 22 4 46 21
3 32 15 3 36 17
2 6 3 2 16 7
1 0 0 1 14 6

Total 216 100 Total 216 100

7 Recall that each experimental session consists of three stages that differ in the payment rule and whether
or not beliefs were elicited, see Table 1. In each stage, participants made decisions in games B, M and E.
There are six possible ways to order the three games and we randomly assigned four participants to each of
the six orderings (for a total of 24 subjects per session). Two-sided chi-square tests regarding the equality of
choice distributions indicate no significant order effects within each stage and no significant differences
across the three stages (for all three games and in both treatments). In the analyses reported below, we
therefore pool data from all three stages, unless otherwise stated.

8 Proportion tests comparing the three percentage pairs yield p-values of 0.208, 0.511 and 0.075
respectively.

9 Another family of models to consider would be the cognitive hierarchy models (Camerer et al., 2004). In
these, a player of level k believes others to be from a distribution over all levels smaller than k. We omit
analysis of such models as their performance is similar to some of the level-k or Nash models we analyse and it
would not add much to our discussion.
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likelihood techniques to pin down the parameters of these models to fit behaviour in
the baseline 11–20 game (B11–20). Then we evaluate the performance of the different
models in terms of their out-of-sample predictive power in the other five game
variations.

One issue that needs to be addressed upfront is that bothNash and level-k have a ‘zero-
likelihood problem’. For instance, for the 11–20 baseline treatment the Nash
equilibrium predicts that requests less than 15 should not be observed.10 We deal with
the zero-likelihood problem using two models of ‘noise’ or ‘error’. In one approach,
players behave as predicted by the original model with probability 1 � � and with
probability � they randomise uniformly over all actions. Such action trembles are
insensitive to their costs. Alternatively, the logit choice rule in (1) also allows for trembles
to occur but such that their likelihood falls with the cost which we refer to as payoff
trembles. The different error structures for Nash and level-k are shown in Table 3.

Another issue with level-k models is the specification of level-0 behaviour. In the
baseline game, as in the original game in Arad and Rubinstein (2012), the best response
of a level-1 is to choose 19, irrespectively of whether level-0 chooses 20 or randomises
uniformly. This feature is not preserved in our other games. We therefore also allow for
these two different ways of specifying the behaviour of level-0. The second column of
Table 3 specifies which level-0 behaviour is used in each level-k model estimated.

The QRE and NI models also employ the logit choice rule and, hence, they are not
prone to a zero-likelihood problem. An important distinction is that in QRE and NI,
players are aware that others’ choices follow the logit rule, i.e. that their behaviour is
noisy. In contrast, Nash and level-k retain the best-response assumption and noise is
only introduced to explain deviations from the model’s predictions.

3.1. Data

A total of 72 subjects played the 11–20 version of games B, M, E and another 72
subjects played the 1–10 version, see Figure 2. Let G denote the set of all six games.
Each subject played all three games (B, M and E) in each of the three stages of the
experiment for a total of nine choices. Let xig ;s denote the observed choice of subject
i = 1, . . . , 144 in game g 2 G played in stage s 2 {1, 2, 3}. Define xig ¼ fxig ;1;
xig ;2; x

i
g ;3g, xi ¼ fxiB ; xiM ; xiEg and xg ¼ fx1g ; . . . ; x144g g.

In each of the three games played in stage 3, each subject reported beliefs about the
opponent’s choices. Subjects reported their beliefs as the number of opponents, out of
the 23 in the session, they believed would make one of the ten possible choices in game
g. Let big ¼ fbig ;1; . . . ; big ;10g denote the reported beliefs for subject i in game g, where
each entry is a non-negative integer and the entries sum to 23, and define
bi ¼ fbiB ; biM ; biEg.

10 It is readily verified that there are no pure-strategy Nash equilibria and that any mixed equilibrium
includes 20. Indifference between 19 and 20 dictates that 20 is played with probability 0.05. Likewise,
indifference between 18 and 20 dictates that 19 is played with probability 0.10. This logic continues for lower
request amounts until the choice probabilities add up to 1. In the mixed-strategy Nash equilibrium for the
11–20 baseline game the probabilities of each request amount between 11 and 20 are therefore
(0, 0, 0, 0, 0.25, 0.25, 0.20, 0.15, 0.10, 0.05). The Nash equilibria of the other game variations can be
computed similarly.
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3.2. Estimation Using 11–20 Baseline Data Only

We apply maximum-likelihood techniques to estimate parameter values for the
different models using only the 11–20 baseline treatment. For Nash, we estimate an
error parameter � 2 [0, 1], which corresponds to trembles in actions, or a logit error
parameter l ≥ 0, which corresponds to cost-sensitive errors. For QRE we only estimate
the latter. The level-k and NI models allow for heterogeneity among subjects. We
model the distribution of types for each such model as a Poisson distribution
(truncated at 9, the highest level type we can distinguish). This is characterised by a
single parameter s. Both parameters, s and the common error parameter (� or l), are
estimated in a finite mixture model. Let hM represent the set of parameters
corresponding to model M 2 {Nash, QRE, level-k, NI}, e.g. h QRE ¼ flg while
h NI ¼ fl; sg.

Given a game g and parameter values hM , each model generates a probability
distribution pM ðajhM ; g Þ over the set of possible actions a 2 A. For example, for QRE
this distribution follows from the fixed-point condition:

pM ðajl; g Þ ¼ /l½pM ðajl; g Þ�; 8a 2 A; (5)

and is the same for all players, i.e. behaviour is homogeneous. In contrast, in the NI
model, we allow for different types:

pM ðajl; k; g Þ ¼ /l

�
/lf� � �/l

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{k times

½/1ðaÞ�g�; 8a 2 A; (6)

where /1ðaÞ ¼ 1=10 for all a 2 A, i.e. uniform randomisation.
An individual’s likelihood function evaluated at hM given the observed choices, xi , in

the set of games G for the homogeneous models is given by:11

Li
M ðhM jxi ;GÞ ¼

Y
g2G

s¼1...3

pM ðxig ;s jhM ; g Þ; (7)

and for models with heterogeneity by:

Li
M ðhM jxi ;GÞ ¼

X9
k¼0

f ðk; sÞ
Y
g2G

s¼1...3

pM ðxig ;sjhM ; g Þ; (8)

where f ðk; sÞ ¼ ðe�ssk=k!Þ=½P9
‘¼0ðe�ss‘=‘!Þ� is the truncated Poisson distribution. The

log-likelihood function evaluated at hM given the observed choices, xg , in game g 2 G is
then:

logLðhM jxg ; g Þ ¼
X144
i¼1

log½Li
M ðhM jxig ; g Þ�: (9)

We obtain parameter estimates by maximising the log-likelihood function, using data
from the 11–20 baseline game only:

11 Subjects played variants of the 11–20 game or the 1–10 game but not both. To keep the notation simple
we use the convention that pM ðxig ;s jhM ; g Þ ¼ 1 if subject i did not play a certain game g.
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h�M ¼ argmax
hM

½logLðhM jxg ; g ¼ B11�20Þ�: (10)

The parameter estimated values are summarised in Table 3. It is interesting to note
here that for most level-k models and noisy introspection the estimated value for s, the
level distribution parameter, lies very close to what is found in similar exercises in
the literature (Camerer et al., 2004). These values place more than 80% of the
distribution’s mass at levels 0–3. The ‘odd one out’ appears to be the level-k model with
level 0 being uniform and payoff trembles: this lower estimate for s places more than
70% of the mass on levels 0 and 1.

3.3. Out-of-sample Performance: Choices

We next evaluate the out-of-sample performance of the various models. For this we
use all games, including the 1–10 games, except for the B11�20 game that was used
to estimate the models’ parameters. We denote this set of games as
G 0 ¼ G n fB11�20g. The subjects that played the 1–10 games are different from
the subjects whose 11–20 baseline choices were used to estimate model parameters.
Still, there is no reason to suspect that there are systematic differences between the
pool of 72 subjects that played the 11–20 game and the pool of 72 subjects that
played the 1–10 games. The predicted choice distributions under the NI model are
depicted in the lower panel of Figure 3 for treatment 11–20 and Figure 4 for
treatment 1–10.12

We measure performance by the likelihood of the observed data given a model’s
prediction. Given a game g 2 G 0 and the estimated values, h�M , shown in Table 2, each
model generates a probability distribution over the possible actions pM ðajh�M ; g Þ. We
use this to calculate each subject’s likelihood for making the particular choices in all
games in G 0. We then take logarithms and sum up for all subjects to obtain the log-
likelihood of the observed data:

LM ¼
X144
i¼1

log½Li
M ðh�M jxi ;G 0Þ�: (11)

Notice that we treat all choices made by a particular subject across all games he played
as a single observation. This strong consistency requirement does not make a
difference for homogeneous models but sets a higher bar for models with
heterogeneity. It implies that a subject maintains his type across games. We believe
this is the correct way of evaluating models with heterogeneity, unless one has a model
of how individuals’ types change across game froms.13 However, our results are robust
to imposing only weak consistency, i.e. when subjects’ types are allowed to vary across
games (see online Appendix A).

12 In online Appendix B, we provide similar graphs with the predicted choice distributions for all the
models we estimate.

13 There is an active literature focusing on the issue of persistence of types across games. See for example
Georganas et al. (2015) and Cooper et al. (2015). Alaoui and Penta (2016) develop a theoretical a model in
which levels of thinking are determined endogenously.
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To derive a score that lies between 0% and 100%, we compare this log-likelihood
with two benchmarks. One is the upper-bound on the log-likelihood set by the model
that exactly reproduces the choice frequencies observed in the experiment. The other
is a ‘lower-bound’ set by completely random choice. Let ng ðaÞ ¼ P

i

P
s 1ðxig ;s ¼ aÞ

denote the total number of a choices in game g then the upper-bound on the log-
likelihood is given by:

L ¼
X
g2G 0

X
a2A

ng ðaÞ log
ng ðaÞ
3 � 72
� �

: (12)

The lower-bound based on uniform randomisation is simply L ¼ ð72 	 6 þ 72 	 9Þ
	 logð1=10Þ, since subjects made 3 choices from a set with 10 possible actions in each
game, and we consider 2 games (we exclude the B 11�20 game) for the 72 subjects that
played the 11–20 games and all 3 games for the 72 subjects that played the 1–10 games.
We can now define a model’s likelihood score as:

SLM ¼ LM � L
L � L 	 100%: (13)

The likelihood scores for the different models are shown in the left panel of
Figure 5.
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Fig. 5. Predictive Performance of the Models against Benchmarks
Notes. Predictive performance is based on the estimated models’ predictions for choices in the
five games other than the B11�20 game, which was used in estimation. For beliefs, it is based on
predicted beliefs for all games, including the B11�20 game. For performance, we impose strong
consistency of behaviour across games. In calculating the likelihood score for beliefs in the Nash
equilibrium, we again encounter the zero-likelihood problem. We therefore assume that, under
this model, reported beliefs are Nash with some probability 1 � λ and purely random with
probability λ. The likelihood score is maximised when λ = 0.56 and the resulting maximum score
is reported here. It should therefore be interpreted as an upper bound for the performance of
Nash in predicting beliefs and not be compared to the level-k models that perform worst than
that. Colour figure can be viewed at wileyonlinelibrary.com.
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RESULT 1. Based on likelihood scores, models that employ cost-sensitive payoff trembles predict
choices significantly better than those based on action trembles.

Support. The models are non-nested but a Vuong closeness test shows that the five
models that use cost sensitive errors (five right bars in the left panel of Figure 5)
perform better at the 0.001% level than the three models based on action trembles
(three left bars).

RESULT 2. Based on likelihood scores, models that assume common knowledge of noise predict
choices significantly better than those that do not.

Support. A Vuong closeness test shows that the QRE and NI models that assume
common knowledge of payoff trembles (two right bars in the left panel of Figure 5)
perform better at the 0.001% level than the three payoff-tremble models that do not
(three middle bars).

Interestingly, the homogeneous QRE model performs as well as the heterogeneous NI
model, at least in terms of likelihood. The reason for good performance differs for the
models, however. The QRE model has a higher error rate and, hence, results in ‘flatter’
choicedistributions thanNI.When likelihood is the scoring criterion this helps, in the sense
that even thoughQRE is less likely tobe ‘right’,when it is ‘wrong’ thepenalty isnot thathigh.

3.4. Out-of-sample Performance: Beliefs

The top panels of Figures 6 and 7 present the observed belief distribution by treatment and
game. The bottom panels show the predictions under the NI model. To measure how well
each model predicts beliefs, we follow a similar procedure as described in subsection 3.3.

Given a game, g 2 G, and the estimated parameters, h�M , each of the models predicts a
belief distribution, bM ðajh�M ; g Þ, over the opponent’s actions. We use big ;a to denote i’s
guess abouthowmanyothers choose actiona in game g. Like for choices, we require strong
consistency. Thus, an individual’s likelihood function for beliefs evaluated at hM , given the
reported beliefs, xig , in the set of games G for the homogeneous models is given by:14

Bi
M ðh�M jbi ;GÞ ¼

Y
g2G

s¼1...3

Y
a2A

bM ðajh�M ; g Þbig ;a ; (14)

and for models with heterogeneity by:

Bi
M ðh�M jbi ;GÞ ¼

X9
k¼0

f ðk; sÞ
Y
g2G

s¼1...3

Y
a2A

bM ðajh�M ; g Þbig ;a : (15)

We then can define the log-likelihood for beliefs as:

BM ¼
X144
i¼1

log½Bi
M ðh�M jbi ;GÞ�: (16)

14 In both cases we ignore a multinomial coefficient, ½ðbig ;1 þ . . . þ big ;10Þ!�=ðb1g ;1! . . . big ;10!Þ, as it would also
appear in the upper and lower bounds and therefore cancels when defining the likelihood score for beliefs.
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Note that we now consider all six games, including the B11�20 game as reported beliefs
were not used in model parameter estimation. The upper bound is given by:

B ¼
X72
i¼1

X
g2G

X
a2A

big ;a log

P
i b

i
g ;a

23	 72

 !
; (17)

while the lower bound is B ¼ 144 	 96 	 logð1=10Þ. The likelihood score is then:

SBM ¼ BM � B
B � B 	 100%: (18)

The calculated values for all models are presented in the right panel of Figure 5.

RESULT 3. Based on likelihood scores, level-k models predict beliefs significantly worse than
uniformly random beliefs.

Support. A Vuong closeness test shows that all four level-k model specifications
perform worst at the 0.001% level than a model in which beliefs are draws from a
uniform distribution over all possible choices. This random model defines the 0% limit
for the likelihood score.

RESULT 4. Based on likelihood scores, models that assume common knowledge of noise predict
beliefs significantly better than those that do not.

Support. A Vuong closeness test shows that QRE and NI perform significantly better
than Nash and the level-kmodels at the 0.001% level. The difference between QRE and
NI is not statistically significant (p-value = 0.35).

3.5. Choice Consistency

Up to this point, we find QRE and NI are the two winning models in predicting
subjects’ aggregate behaviour and there is no significant difference between these two.
To compare the performance of these two models further, we turn our attention to
individual choices. There is significant heterogeneity in choices not only across
subjects, but within subjects as well. Subjects often switched to different choices when
playing the same game again in different stages of the experiment. To evaluate how
well either model predicts individual switching patterns, we calculate the expected
number of times a particular subject will make the same choice in a particular game
across all three stages (every time, only twice, never) based on the estimated models
and compare it to the actual data. The results are shown in Figure 8.

The QRE model captures some heterogeneity but it tends to overestimate the
number of times a subject never repeats the same choice and underestimate the times
a subject consistently repeats the same choice in all three stages.15

15 More specifically, a two-sided proportion test shows significant difference at 1% level between QRE
prediction and actual data in the percentage of always switching behaviour and the percentage of never
switching behaviour. Using the Fisher’s exact test to compare the distributions across three categories reveals
significant difference at 1% as well.
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RESULT 5. The Noisy Introspection model predicts switching behaviour significantly better
than the QRE model.

Support. The Fisher’s exact test reports significant difference in the overall
distribution between the QRE and NI predictions, p < 0.001. The predicted percent-
age of always switching behaviour falls from 45.2% under the QRE to 37.4% under the
NI model, getting closer to the observed 25.5%, and this difference is significant
according to a proportion test, p = 0.02. The predicted percentage of never switching
behaviour increases from 6.4% under the QRE to 16.5% under the NI model, moving
towards the observed 26.9%, and also this difference is significant according to a
proportion test, p < 0.001.

Noisy introspection outperforms QRE because it predicts heterogeneity across
subjects and choice consistency within subjects. It should be pointed out though that
the NI predictions are significantly different from the data at the 1% level according to
Fisher’s exact test.

4. Conclusions

Arad and Rubinstein (2012) suggest the 11–20 game as a tool to study level-k reasoning.
We concur but propose to take their suggestion a step further: the 11–20 game plus
some variations form an ideal tool to study a variety of models of strategic thinking, not
just level-k. After all, choice behaviour in the basic 11–20 game is well explained by
several models and it is natural to explore game variations that can discriminate
between them. More generally, small variations, such as the ones proposed here, allow
experimenters to probe a series of questions related to depth of reasoning, belief
formation and learning in games.

1.0

0.8

0.6

0.4

0.2

0

Always Switch Other Never Switch

Data NI QRE

Fig. 8. Number of Choice Switches Per Game
Note. Colour figure can be viewed at wileyonlinelibrary.com.
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Standard models such as Nash equilibrium or level-k, operationalised with the
injection of uniform noise to avoid the zero-likelihood problem, do a poor job when
brought to our experimental data. Allowing for the noise to be payoff dependent helps
the performance of these models but it should be noted that predictions for specific
games may be significantly different than the ones given by the standard models. Even
so, an important ingredient seems to be missing. Our data on beliefs indicate that
players are aware of the noise in others’ behaviour. In fact, we find that the best
performance across all variations of the 11–20 game we used is achieved by the models
that incorporate such ‘common knowledge of noise’: QRE and noisy introspection.

There is one ingredient of the level-kmodel that while not decisive, does seem to reflect
an important feature of the data: heterogeneity. The noisy introspection model we
estimate extends the homogeneous model of Goeree and Holt (2004) with a hierarchy of
types. This element moves predictions closer to the data compared to the QRE model,
although still not closeenough. In light of these results, weencourage further investigation
to understand theheterogeneity in strategic thinking, but we strongly encourage this to be
done ina frameworkwherepayoff-dependentnoise and ‘commonknowledgeofnoise’ are
explicitly accounted for. The noisy introspection model provides such a framework.
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